

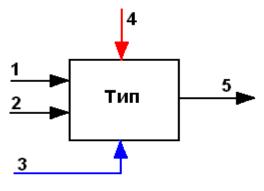
Информационно-энергетические схемы в изобретательской практике

Бушуев А.Б, Тюрин А.И. Кафедра систем управления и информатики

Цели работы

- 1. Научная получить новые результаты в ТРИЗ в области схемотехнических задач, касающиеся физического принципа действия устройств
- 2. Учебная научить студентов получать формализованные модели в виде структурных схем, пригодных для дальнейшего патентования

Уровень техники, аналоги


- 1. Законы развития ТС и вепольный анализ (Г.С. Альтшуллер, В.М.Петров)
- 2. Потоково функциональные схемы (А.И. Половинкин)
- 3. Энерго-информационный метод научно-технического творчества (М.Ф. Зарипов и его школа)
- 4. Вещественно-полевые структурные схемы (Голдовский Б. И., Вайнерман М. И. Рациональное творчество)
- 5. Использование размерностей физических величин (Глазунов В.Н.)
- 6. Система кинематических величин Р.О. Бартини

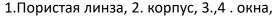
Постановка задачи и анализ схемных ресурсов

- 1.Задан прототип в виде описания к патенту на изобретение, включающий либо чертёж конструкции, либо структурную схему с блоками и связями, и принцип работы устройства.
- 2. Необходимо по законам развития ТС синтезировать новую структуру, с удалением старых и добавлением новых блоков и связей, возможно, с новой функцией и минимальными затратами ресурсов схемы. Если схема в прототипе не задана, необходимо её составить.

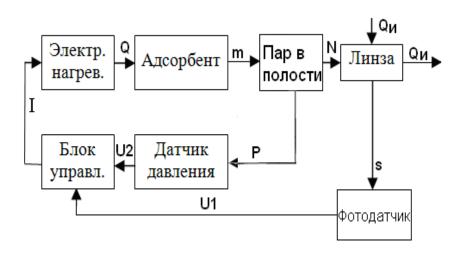
Ресурсы блоков

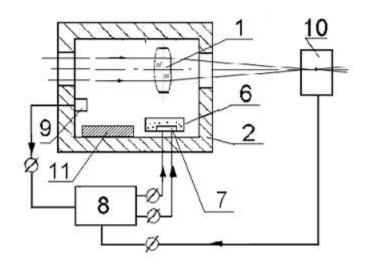
- 1. Тип, название, функция, выполняемая блоком
- 2. Входы / выходы: информационные, энергетические, синхронизирующие
- 3. Физические величины на входах и выходах блоков

Ресурсы связей:

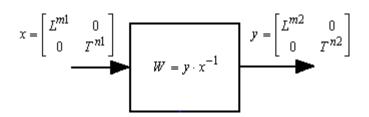

1. Последовательные, 2. Параллельные 3. Обратная связь

Пример составления информационно-энергетической схемы перестраиваемой оптической системы




- 5. полость с парами жидкости 6.адсорбент
- 7. нагреватель 8. блок управления 9. датчик давления

Информационно-энергетическая схема замкнутой системы. Конструкция системы регулирования концентрации паров.



Численная оценка ресурсоёмкости схемы

Передаточная матрица блока

$$W = y \cdot x^{-1} = \begin{bmatrix} L^{m2} & 0 \\ 0 & T^{n2} \end{bmatrix} \cdot \begin{bmatrix} L^{-m1} & 0 \\ 0 & T^{-n1} \end{bmatrix} = \begin{bmatrix} L^{m2-m1} & 0 \\ 0 & T^{n2-n1} \end{bmatrix}$$

Определитель передаточной матрицы

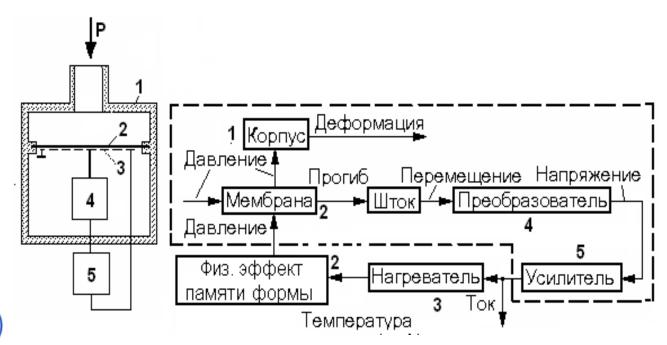
$$\det = L^{m2-m1} \cdot T^{n2-n1}$$

Ресурсоёмкость блока

$$R = \sqrt{(m2 - m1)^2 + (n2 - n1)^2}$$

Суммарная ресурсоёмкость схемы

$$R_{\sum} = \sum_{i=1}^{k} R_i$$


Система кинематических величин Бартини

	L-3	L	Ľ	Ľ	Ľ	L	L	Ĺ	5	L
T [®] ,9							L ³ T-6	L⁴T⁻6	Изменение моциности	Скорость передачи мощности
T 8						Изменение давления	Поверхностная мощность	Скорость изменения сипы	Мощность	Скорость передачи энергии
T 1					Изменение плотности тока	Давление	Угловое ускорение меюсы	Сила	Момент силы Энергия	Скорость передачи действия
T S				Изменение углавого ускорения	Плотность тока	Напряженность эл-маг, поля Градмент	Ток Массовый расход	Скорость смещения заряда Импульс	Момент количества движения Действие	Момент действия
T .5			Изменение объемной плотности	Массовая плотность Угловое ускорение	Ускорение	Разность потенциалов	Macco Komevecteo varientiama Komevecteo anexipevectea	Магнитный момент	Мюмент инерция	
T'A		L-2T-1	L-1T-1	Частота	Скорость	Обяльно сть 2-х мерная	Расход объемный	Скорость смещения объема		
Γ	L-3T°	L-2T°	Изменение- проводимости	Безразмерные жонстанты	Длина Емкость Самонндукция	Поверхность	Объем простран- ственный			
T 2	L-3T1	Изменение магнитной проницаемо сти	Проводимость	Период	Длительность расстояния	L ² T ¹				
ľ 🛴	L-3T2	Магнитная проницаемость	L-1T2	Поверхность времени	L ¹ T ²					10
7	L-3T3	L-2T3	L-1T3	Объем времени						
T, 0) /	1/	2/	3/	4/	5/	6/	7/	8	9/

Оценка ресурсоёмкости датчика давления

Имитационная модель датчика давления

Анализ ресурсоёмкости схемы

$$R1 = \sqrt{(-1)^2 + 4^2} = \sqrt{17}, R2 = \sqrt{0^2 + 0^2} = 0, R3 = \sqrt{1^2 + (-2)^2} = \sqrt{5},$$

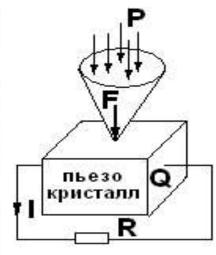
$$R4 = \sqrt{1^2 + (-1)^2} = \sqrt{2}, R5 = \sqrt{2^2 + (-1)^2} = \sqrt{5}, R6 = \sqrt{(-3)^2 + (0)^2} = 3,$$

$$R7 = \sqrt{(-1)^2 + 4^2} = \sqrt{17}$$

где R1- ресурсоёмкость мембраны, R2 - штока, R3 - преобразователя, R4 - усилителя, R5 - нагревателя, R6 - физ. эффекта памяти формы, R7- корпуса. Общая ресурсоёмкость схемы R=18.55.

Найдём передаточную матрицу от давления (входной величины датчика) к его выходной величине – току на выходе усилителя как произведение последовательно соединенных блоков

$$W = \begin{bmatrix} L^{o} & 0 \\ 0 & T^{0} \end{bmatrix}, \begin{bmatrix} L^{-1} & 0 \\ 0 & T^{4} \end{bmatrix}, \begin{bmatrix} L^{o} & 0 \\ 0 & T^{0} \end{bmatrix}, \begin{bmatrix} L^{o} & 0 \\ 0 & T^{-2} \end{bmatrix}, \begin{bmatrix} L^{-1} & 0 \\ 0 & T^{-1} \end{bmatrix} = \begin{bmatrix} L^{1} & 0 \\ 0 & T^{1} \end{bmatrix}$$
 Теоретическая минимальная ресурсоемкость Rmin равна
$$R\min = \sqrt{(1)^{2} + 1^{2}} = 1.41$$


Реальная ресурсоемкость той же ветви равна сумме *R*=*R*1+*R*2+*R*3+*R*4=7.77, т.е. схема обладает избыточностью. Посмотрим, как происходит преобразование давления в электрический ток на таблице Бартини

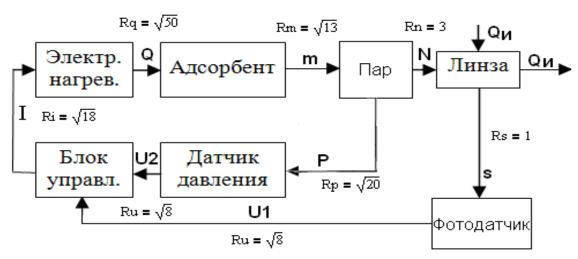
Синтез нового решения

Ресурсоемкость Кпьезо=5,236< Кмембр=7.77

$$W = \begin{bmatrix} L^2 & 0 \\ 0 & T^0 \end{bmatrix}, \begin{bmatrix} L^{-1} & 0 \\ 0 & T^2 \end{bmatrix} \cdot \begin{bmatrix} L^o & 0 \\ 0 & T^{-1} \end{bmatrix} \cdot = \begin{bmatrix} L^1 & 0 \\ 0 & T^1 \end{bmatrix}$$

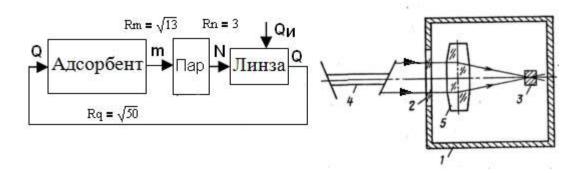
Таблица Бартини как база физических эффектов

Любой физический эффект задаём передаточной матрицей или отношением матриц размерностей выходной и входной физических величин преобразования. Например, нагреватель в схеме датчика давления имеет передаточную матрицу WH, мембрана (без эффекта памяти формы) — WM, а сам физический эффект памяти формы — WП, где


$$\mathbf{W}_{\mathbf{H}} = \begin{bmatrix} L^2 & 0 \\ 0 & T^{-1} \end{bmatrix}, \mathbf{W}_{\mathbf{M}} = \begin{bmatrix} L^{-1} & 0 \\ 0 & T^4 \end{bmatrix}, \mathbf{W}_{\mathbf{\Pi}} = \begin{bmatrix} L^{-3} & 0 \\ 0 & T^0 \end{bmatrix}$$

Нагреватель с входом «электрический ток» и выходом «энергия (статистическая температура)» по своей размерности занимает клетку L^2T^1 таблицы Бартини, названную несколько непонятно - «обильность двумерная». С точки зрения базы физических эффектов обильность двумерная задаёт физический эффект преобразования эл. тока в тепловую энергию. Ультразвуковой капиллярный эффект, имеющий входной сигнал «частоту колебаний» и выходной сигнал - «высоту жидкости в капилляре», размещается в клетке L^1T^1 «длительность времени». Пьезомагнитный эффект, имеющий вход в виде «силы» и выход - в виде «ферромагнитного момента», помещается в клетке L^0T^2 с названием «поверхность времени».

Ресурсоёмкость связей схемы


Rq- ресурсоёмкость теплового потока, Rm - массы, Rn - концентрации, Rs – фокусного расстояния, Rp - давления, Ru – электрического напряжения, Ri- тока. Общая ресурсоёмкость связей равна

$$Rc = \sqrt{50} + \sqrt{13} + 3 + 1 + \sqrt{20} + 2, \sqrt{8} + \sqrt{18} = 29.048$$

Свёртка исходной структуры системы регулирования концентрации паров

Свёртка исходной структуры с целью снижения ресурсоёмкости связей с использованием ВПР связей., Ресурсоёмкость связей полученной схемы 13.677, прототип 29.048.

Заключение

- 1. Особенность рассмотренной работы не задано никаких количественных значений входных и выходных сигналов блоков, характера их изменения, диапазонов изменения, а также параметров самих блоков. Поэтому структуры с минимальной ресурсоемкостью могут рассматриваться в некотором смысле как идеальный конечный результат.
- 2. Однако, поскольку полученные структуры не противоречат законам физики, то они могут быть реализованы физически при ограничениях на входные сигналы и свойства блоков, а следовательно, патентоспособны.
- 3. Возможности учета ограничений в рамках предложенных математических ресурсных моделей являются направлением дальнейших исследований.
- 4. Полученные методы оценки ресурсоёмкости легко компьютеризируются, в частности, в символьной математике Маткада.

Спасибо за внимание!

www.ifmo.ru

IT;MOre than a UNIVERSITY